

Appendix 2-10 – Leachate Analysis

QUARTER 4 (ANNUAL) 2022

COMPLIANCE REPORT OF ANNUAL LEACHATE MONITORING AT THE BORD NA MÓNA DREHID WASTE MANAGEMENT FACILITY, CO. KILDARE IN COMPLIANCE WITH IED LICENCE REGISTER NO. W0201-03

Prepared by:

Donal Marron Environmental Consultant

DonalMarron

Monitoring Date:

26th October 2022

Report Date:

30th January 2023

EXECUTIVE SUMMARY

Drehid Waste Management Facility is required to conduct quarterly and annual leachate monitoring in compliance with the EPA IED Licence (W0201-03).

A leachate sample was obtained on the 26th October 2022 and was analysed for annual parameters as per the leachate monitoring schedule outlined in the IED Licence W0201-03. The results obtained are displayed in Table 1.0 and are typical of a landfill leachate sample.

1.0 LEACHATE RESULTS

The location of the Leachate (TK2) sampling point is the leachate storage tank to the south east of the landfill body.

Table 1.0 : Result	s of the Annu	al Chemical Analysis of Leachate Sample TK-2
Sample ID	Units	TK-02
Received Date & T	ime	26/10/22
Sample Type		Leachate
рН	pH Units	8.0
Conductivity	µS/cm	21,822
BOD	mg/l O ₂	163
COD	mg/l O ₂	5,140
Chloride	mg/l	2,792.4
Fluoride	mg/l	0.8
Total Phosphorous	mg/l	17.432
NH3-N	mg/l	1,553.36
Sulphate	mg/l	416.3
Sodium (Dissolved)	mg/l	2,033.6
Magnesium (Dissolved)	mg/l	130.9
Potassium (Dissolved)	mg/l	887.5
Calcium (Dissolved)	mg/l	186.3
Iron (Dissolved)	µg/l	854
Chromium (Dissolved)	µg/l	296
Manganese (Dissolved)	µg/l	473
Nickel (Dissolved)	µg/l	214
Copper (Dissolved)	µg/l	<14
Zinc (Dissolved)	µg/l	212
Cadmium (Dissolved)	µg/l	<1
Lead (Dissolved)	µg/l	<10
Arsenic (Dissolved)	µg/l	381.4
Mercury (Dissolved)	µg/l	<2
Cyanide	mg/l	0.08
TON	mg/l	<0.2

<u>Notes</u>

< Less than Laboratory Limit of Detection

Table 1.0 : Results of the	Annual	Chemical Analys	sis of Leachate Sample TK-2 (S	-VOCs)	Contd.
Determinand	units	Leachate TK2	Determinand	units	Leachate TK2
Phenols			Phthalates		
2-Chlorophenol	μg/l	<1	Bis(2-ethylhexyl) phthalate	μg/l	<5
2-Methylphenol	μg/l	11.5	Butylbenzyl phthalate	μg/l	<1
2-Nitrophenol	μg/l	<0.5	Di-n-butyl phthalate	μg/l	<1.5
2,4-Dichlorophenol	μg/l	<0.5	Di-n-Octyl phthalate	μg/l	<1
2,4-Dimethylphenol	μg/l	<1	Diethyl phthalate	μg/l	<1
2,4,5-Trichlorophenol	μg/l	<0.5	Dimethyl phthalate	μg/l	<1
2,4,6-Trichlorophenol	μg/l	<1	Other SVOCs	μg/l	
4-Chloro-3-methylphenol	μg/l	<0.5	1,2-Dichlorobenzene	μg/l	<1
4-Methylphenol	μg/l	7	1,2,4-Trichlorobenzene	μg/l	<1
4-Nitrophenol	μg/l	<10	1,3-Dichlorobenzene	μg/l	<1
Pentachlorophenol	μg/l	<1	1,4-Dichlorobenzene	μg/l	<1
Phenol	μg/l	7	2-Nitroaniline	μg/l	<1
PAHs	μg/l		2,4-Dinitrotoluene	μg/l	<0.5
2-Chloronaphthalene	μg/l	<1	2,6-Dinitrotoluene	μg/l	<1
2-Methylnaphthalene	μg/l	<1	3-Nitroaniline	μg/l	<1
Naphthalene	μg/l	2	4-Bromophenylphenylether	μg/l	<1
Acenaphthylene	μg/l	<0.5	4-Chloroaniline	μg/l	<1
Acenaphthene	μg/l	<1	4-Chlorophenylphenylether	μg/l	<1
Fluorene	μg/l	<0.5	4-Nitroaniline	μg/l	<0.5
Phenanthrene	μg/l	<0.5	Azobenzene	μg/l	<0.5
Anthracene	μg/l	<0.5	Bis(2-chloroethoxy)methane	μg/l	<0.5
Fluoranthene	μg/l	<0.5	Bis(2-chloroethyl)ether	μg/l	<1
Pyrene	μg/l	<0.5	Carbazole	μg/l	<0.5
Benzo(a)anthracene	μg/l	<0.5	Dibenzofuran	μg/l	<0.5
Chrysene	μg/l	<0.5	Hexachlorobenzene	μg/l	<1
Benzo(bk)fluoranthene	μg/l	<1	Hexachlorobutadiene	μg/l	<1
Benzo(a)pyrene	μg/l	<1	Hexachlorocyclopentadiene	μg/l	<1
Indeno(123cd)pyrene	μg/l	<1	Hexachloroethane	μg/l	<1
Dibenzo(ah)anthracene	μg/l	<0.5	Isophorone	μg/l	<0.5
Benzo(ghi)perylene	μg/l	<0.5	N-nitrosodi-n-propylamine	μg/l	<0.5
			Nitrobenzene	μg/l	<1

Table 1.0 : Results of the Annual	Chemic	al Analysis of Le	achate Sample TK-2 (VOCs) Contd		
Determinand	units	Leachate TK2	Determinand	units	Leachate TK2
Dichlorodifluoromethane	ug/l	<2	Ethylbenzene	ug/l	11
Methyl Tertiary Butyl Ether	ug/l	1.4	m/p-Xylene	ug/l	20
Chloromethane	ug/l	<3	o-Xylene	ug/l	11
Vinyl Chloride	ug/l	<0.1	Styrene	ug/l	<2
Bromomethane	ug/l	<1	Bromoform	ug/l	<2
Chloroethane	ug/l	<3	Isopropylbenzene	ug/l	<3
Trichlorofluoromethane	ug/l	<3	1,1,2,2-Tetrachloroethane	ug/l	<4
1,1-Dichloroethene (1,1 DCE)	ug/l	<3	Bromobenzene	ug/l	<2
Dichloromethane (DCM)	ug/l	<3	1,2,3-Trichloropropane	ug/l	<3
trans-1-2-Dichloroethene	ug/l	<3	Propylbenzene	ug/l	<3
1,1-Dichloroethane	ug/l	<3	2-Chlorotoluene	ug/l	<3
cis-1-2-Dichloroethene	ug/l	<3	1,3,5-Trimethylbenzene	ug/l	<3
2,2-Dichloropropane	ug/l	<1	4-Chlorotoluene	ug/l	<3
Bromochloromethane	ug/l	<2	tert-Butylbenzene	ug/l	<3
Chloroform	ug/l	<2	1,2,4-Trimethylbenzene	ug/l	5
1,1,1-Trichloroethane	ug/l	<2	sec-Butylbenzene	ug/l	<3
1,1-Dichloropropene	ug/l	<3	4-Isopropyltoluene	ug/l	14
Carbon tetrachloride	ug/l	<2	1,3-Dichlorobenzene	ug/l	<3
1,2-Dichloroethane	ug/l	5	1,4-Dichlorobenzene	ug/l	<3
Benzene	ug/l	4.4	n-Butylbenzene	ug/l	<3
Trichloroethene (TCE)	ug/l	<3	1,2-Dichlorobenzene	ug/l	<3
1,2-Dichloropropane	ug/l	<2	1,2-Dibromo-3-chloropropane	ug/l	<2
Dibromomethane	ug/l	<3	1,2,4-Trichlorobenzene	ug/l	<3
Bromodichloromethane	ug/l	<2	Hexachlorobutadiene	ug/l	<3
cis-1-3-Dichloropropene	ug/l	<2	Naphthalene	ug/l	2
Toluene	ug/l	25	1,2,3-Trichlorobenzene	ug/l	<3
trans-1-3-Dichloropropene	ug/l	<2	Dibromochloromethane	ug/l	<2
1,1,2-Trichloroethane	ug/l	<2	1,2-Dibromoethane	ug/l	<2
Tetrachloroethene (PCE)	ug/l	<3	Chlorobenzene	ug/l	<2
1,3-Dichloropropane	ug/l	<2	1,1,1,2-Tetrachloroethane	ug/l	<2

2.0 DISCUSSION

A leachate sample was obtained on the 26th of October 2022 and was analysed for annual parameters as per the leachate monitoring schedule outlined in section C.2.3 of the IED Licence (W0201-03). The results obtained are displayed in Table 1.0 and are typical of a landfill leachate sample.

The leachate sent off site for treatment in Quarter 4 2022 was sent to the below 4 No. locations:

- Enva, JFK Road, Naas Road, Dublin 12 (W0196-1)
- Leixlip Waste Water Treatment Plant, Leixlip, County Kildare (D0004-01)
- Rilta Environmental Limited, 402 Grants Drive, Greenogue Business Park, Rathcoole, Co. Dublin (W0192-03)
- Ringsend Waste Water Treatment Plant, Pigeon House Road, Rindsend, Dublin (D0034-01)

APPENDIX 1

Leachate Inspection Records

Laboratory Results

Location	Parameter	07-Oct-22	14-Oct-22	21-Oct-22	28-Oct-22	04-Nov-22	11-Nov-22	18-Nov-22	25-Nov-22	02-Dec-22	02-Sep-22	09-Dec-22	16-Dec-22	23-Dec-22	30-Dec-22
Phase 1/2	Leachate Level (m)	0.87	0.94	0.73	0.76	0.95	0.89	0.85	0.72	0.64	0.75	0.94	0.77	0.81	0.88
Phase 3/4	Leachate Level (m)	0.80	0.88	0.73	0.93	0.90	0.91	0.88	0.74	0.88	0.82	0.72	0.90	0.92	0.91
Phase 5/6	Leachate Level (m)	0.92	0.84	0.80	0.88	0.97	0.87	0.85	0.84	0.91	0.88	0.87	0.90	0.91	0.93
Phase 7/8	Leachate Level (m)	0.83	0.75	0.85	0.88	0.90	0.90	0.91	0.89	0.92	0.95	0.91	0.90	0.92	0.95
Phase 9/10	Leachate Level (m)	0.57	0.57	0.60	0.63	0.68	0.72	0.76	0.78	0.81	0.85	0.82	0.83	0.85	0.91
Phase 11/12	Leachate Level (m)	0.66	0.76	0.89	0.89	0.96	0.86	0.78	0.87	0.84	0.69	0.85	0.78	0.83	0.88
Phase 13/14	Leachate Level (m)	0.80	0.88	0.91	0.88	0.80	0.77	0.81	0.94	0.78	0.89	0.91	0.78	0.83	0.89
Holding Tank 1	Leachate Level (m)	2.35	2.70	2.94	2.83	2.38	2.11	3.03	3.02	2.29	3.12	2.16	2.71	2.11	2.15
Holding Tank 2	Leachate Level (m)	2.61	2.61	2.54	3.02	2.96	2.82	2.48	2.87	2.73	2.16	2.10	2.66	2.61	2.65

ſ

Leachate Daily Visual Inspection - October 2022

DateVisual Inspection/Odour01/10/2022Dark Brown/Foul02/10/2022Dark Brown/Foul03/10/2022Dark Brown/Foul04/10/2022Dark Brown/Foul05/10/2022Dark Brown/Foul06/10/2022Dark Brown/Foul06/10/2022Dark Brown/Foul07/10/2022Dark Brown/Foul08/10/2022Dark Brown/Foul09/10/2022Dark Brown/Foul10/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul13/10/2022Dark Brown/Foul13/10/2022Dark Brown/Foul14/10/2022Dark Brown/Foul15/10/2022Dark Brown/Foul16/10/2022Dark Brown/Foul17/10/2022Dark Brown/Foul12/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul12/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul12/10/2022Dark Brown/Foul12/10/2022Dark Brown/Foul13/10/2022Dark Brown/Foul14/10/2022Dark Brown/Foul22/10/2022Dark Brown/Foul23/10/2022Dark Brown/Foul24/10/2022Dark Brown/Foul25/10/2022Dark Brown/Foul26/10/2022Dark Brown/Foul27/10/2022Dark Brown/Foul28/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul					
02/10/2022 Dark Brown/Foul 03/10/2022 Dark Brown/Foul 04/10/2022 Dark Brown/Foul 05/10/2022 Dark Brown/Foul 06/10/2022 Dark Brown/Foul 06/10/2022 Dark Brown/Foul 07/10/2022 Dark Brown/Foul 08/10/2022 Dark Brown/Foul 09/10/2022 Dark Brown/Foul 09/10/2022 Dark Brown/Foul 10/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022	Date	Visual Inspection/Odour			
03/10/2022Dark Brown/Foul04/10/2022Dark Brown/Foul05/10/2022Dark Brown/Foul06/10/2022Dark Brown/Foul07/10/2022Dark Brown/Foul08/10/2022Dark Brown/Foul09/10/2022Dark Brown/Foul10/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul11/10/2022Dark Brown/Foul13/10/2022Dark Brown/Foul15/10/2022Dark Brown/Foul16/10/2022Dark Brown/Foul17/10/2022Dark Brown/Foul18/10/2022Dark Brown/Foul20/10/2022Dark Brown/Foul21/10/2022Dark Brown/Foul21/10/2022Dark Brown/Foul22/10/2022Dark Brown/Foul23/10/2022Dark Brown/Foul24/10/2022Dark Brown/Foul25/10/2022Dark Brown/Foul26/10/2022Dark Brown/Foul27/10/2022Dark Brown/Foul28/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul20/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29	01/10/2022	Dark Brown/Foul			
04/10/2022 Dark Brown/Foul 05/10/2022 Dark Brown/Foul 06/10/2022 Dark Brown/Foul 07/10/2022 Dark Brown/Foul 08/10/2022 Dark Brown/Foul 09/10/2022 Dark Brown/Foul 09/10/2022 Dark Brown/Foul 10/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022	02/10/2022	Dark Brown/Foul			
05/10/2022 Dark Brown/Foul 06/10/2022 Dark Brown/Foul 07/10/2022 Dark Brown/Foul 08/10/2022 Dark Brown/Foul 09/10/2022 Dark Brown/Foul 10/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 12/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022	03/10/2022	Dark Brown/Foul			
06/10/2022 Dark Brown/Foul 07/10/2022 Dark Brown/Foul 08/10/2022 Dark Brown/Foul 09/10/2022 Dark Brown/Foul 10/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 12/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022	04/10/2022	Dark Brown/Foul			
07/10/2022 Dark Brown/Foul 08/10/2022 Dark Brown/Foul 09/10/2022 Dark Brown/Foul 10/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 12/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022	05/10/2022	Dark Brown/Foul			
08/10/2022 Dark Brown/Foul 09/10/2022 Dark Brown/Foul 10/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 12/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022	06/10/2022	Dark Brown/Foul			
09/10/2022 Dark Brown/Foul 10/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 12/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022	07/10/2022	Dark Brown/Foul			
10/10/2022 Dark Brown/Foul 11/10/2022 Dark Brown/Foul 12/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022	08/10/2022	Dark Brown/Foul			
11/10/2022 Dark Brown/Foul 12/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022	09/10/2022	Dark Brown/Foul			
12/10/2022 Dark Brown/Foul 13/10/2022 Dark Brown/Foul 14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	10/10/2022	Dark Brown/Foul			
13/10/2022Dark Brown/Foul14/10/2022Dark Brown/Foul15/10/2022Dark Brown/Foul16/10/2022Dark Brown/Foul17/10/2022Dark Brown/Foul18/10/2022Dark Brown/Foul19/10/2022Dark Brown/Foul20/10/2022Dark Brown/Foul21/10/2022Dark Brown/Foul21/10/2022Dark Brown/Foul22/10/2022Dark Brown/Foul23/10/2022Dark Brown/Foul24/10/2022Dark Brown/Foul25/10/2022Dark Brown/Foul26/10/2022Dark Brown/Foul27/10/2022Dark Brown/Foul27/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul30/10/2022Dark Brown/Foul30/10/2022Dark Brown/Foul	11/10/2022	Dark Brown/Foul			
14/10/2022 Dark Brown/Foul 15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	12/10/2022	Dark Brown/Foul			
15/10/2022 Dark Brown/Foul 16/10/2022 Dark Brown/Foul 17/10/2022 Dark Brown/Foul 18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	13/10/2022	Dark Brown/Foul			
16/10/2022Dark Brown/Foul17/10/2022Dark Brown/Foul18/10/2022Dark Brown/Foul19/10/2022Dark Brown/Foul20/10/2022Dark Brown/Foul21/10/2022Dark Brown/Foul22/10/2022Dark Brown/Foul23/10/2022Dark Brown/Foul24/10/2022Dark Brown/Foul25/10/2022Dark Brown/Foul26/10/2022Dark Brown/Foul27/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul30/10/2022Dark Brown/Foul	14/10/2022	Dark Brown/Foul			
17/10/2022Dark Brown/Foul18/10/2022Dark Brown/Foul19/10/2022Dark Brown/Foul20/10/2022Dark Brown/Foul21/10/2022Dark Brown/Foul22/10/2022Dark Brown/Foul23/10/2022Dark Brown/Foul24/10/2022Dark Brown/Foul25/10/2022Dark Brown/Foul26/10/2022Dark Brown/Foul27/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul30/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul20/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul29/10/2022Dark Brown/Foul30/10/2022Dark Brown/Foul	15/10/2022	Dark Brown/Foul			
18/10/2022 Dark Brown/Foul 19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	16/10/2022	Dark Brown/Foul			
19/10/2022 Dark Brown/Foul 20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	17/10/2022	Dark Brown/Foul			
20/10/2022 Dark Brown/Foul 21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	18/10/2022	Dark Brown/Foul			
21/10/2022 Dark Brown/Foul 22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	19/10/2022	Dark Brown/Foul			
22/10/2022 Dark Brown/Foul 23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	20/10/2022	Dark Brown/Foul			
23/10/2022 Dark Brown/Foul 24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	21/10/2022	Dark Brown/Foul			
24/10/2022 Dark Brown/Foul 25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	22/10/2022	Dark Brown/Foul			
25/10/2022 Dark Brown/Foul 26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	23/10/2022	Dark Brown/Foul			
26/10/2022 Dark Brown/Foul 27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	24/10/2022	Dark Brown/Foul			
27/10/2022 Dark Brown/Foul 28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	25/10/2022	Dark Brown/Foul			
28/10/2022 Dark Brown/Foul 29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	26/10/2022	Dark Brown/Foul			
29/10/2022 Dark Brown/Foul 30/10/2022 Dark Brown/Foul	27/10/2022	Dark Brown/Foul			
30/10/2022 Dark Brown/Foul	28/10/2022	Dark Brown/Foul			
	29/10/2022	Dark Brown/Foul			
31/10/2022 Dark Brown/Foul	30/10/2022	Dark Brown/Foul			
	31/10/2022	Dark Brown/Foul			

* As recorded on WIF 5.1 - Daily Site Inspection Checksheet

Date	Visual Inspection/Odour
01/11/2022	Dark Brown/Foul
02/11/2022	Dark Brown/Foul
03/11/2022	Dark Brown/Foul
04/11/2022	Dark Brown/Foul
05/11/2022	Dark Brown/Foul
06/11/2022	Dark Brown/Foul
07/11/2022	Dark Brown/Foul
08/11/2022	Dark Brown/Foul
09/11/2022	Dark Brown/Foul
10/11/2022	Dark Brown/Foul
11/11/2022	Dark Brown/Foul
12/11/2022	Dark Brown/Foul
13/11/2022	Dark Brown/Foul
14/11/2022	Dark Brown/Foul
15/11/2022	Dark Brown/Foul
16/11/2022	Dark Brown/Foul
17/11/2022	Dark Brown/Foul
18/11/2022	Dark Brown/Foul
19/11/2022	Dark Brown/Foul
20/11/2022	Dark Brown/Foul
21/11/2022	Dark Brown/Foul
22/11/2022	Dark Brown/Foul
23/11/2022	Dark Brown/Foul
24/11/2022	Dark Brown/Foul
25/11/2022	Dark Brown/Foul
26/11/2022	Dark Brown/Foul
27/11/2022	Dark Brown/Foul
28/11/2022	Dark Brown/Foul
29/11/2022	Dark Brown/Foul
30/11/2022	Dark Brown/Foul

Leachate Daily Visual Inspection - November 2022

* As recorded on WIF 5.1 - Daily Site Inspection Checksheet

Date	Visual Inspection/Odour			
01/12/2022	Dark Brown/Foul			
02/12/2022	Dark Brown/Foul			
03/12/2022	Dark Brown/Foul			
04/12/2022	Dark Brown/Foul			
05/12/2022	Dark Brown/Foul			
06/12/2022	Dark Brown/Foul			
07/12/2022	Dark Brown/Foul			
08/12/2022	Dark Brown/Foul			
09/12/2022	Dark Brown/Foul			
10/12/2022	Dark Brown/Foul			
11/12/2022	Dark Brown/Foul			
12/12/2022	Dark Brown/Foul			
13/12/2022	Dark Brown/Foul			
14/12/2022	Dark Brown/Foul			
15/12/2022	Dark Brown/Foul			
16/12/2022	Dark Brown/Foul			
17/12/2022	Dark Brown/Foul			
18/12/2022	Dark Brown/Foul			
19/12/2022	Dark Brown/Foul			
20/12/2022	Dark Brown/Foul			
21/12/2022	Dark Brown/Foul			
22/12/2022	Dark Brown/Foul			
23/12/2022	Dark Brown/Foul			
24/12/2022	Dark Brown/Foul			
25/12/2022	Dark Brown/Foul			
26/12/2022	Dark Brown/Foul			
27/12/2022	Dark Brown/Foul			
28/12/2022	Dark Brown/Foul			
29/12/2022	Dark Brown/Foul			
30/12/2022	Dark Brown/Foul			
31/12/2022	Dark Brown/Foul			

Leachate Daily Visual Inspection - December 2022

* As recorded on WIF 5.1 - Daily Site Inspection Checksheet

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Marron Environmental 60 Seappoint Dunbur Road Wicklow Co Wicklow Ireland A67 F761	UKAS TESTING 4225
Attention :	Donal Marron
Date :	11th November, 2022
Your reference :	J154
Our reference :	Test Report 22/17700 Batch 1
Location :	Drehid
Date samples received :	27th October, 2022
Status :	Final Report
Issue :	1

Twenty four samples were received for analysis on 27th October, 2022 of which twenty four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

6 June

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:	Marron Environmental
Reference:	J154
Location:	Drehid
Contact:	Donal Marron
EMT Job No:	22/17700

EMT Sample No.	123-129				
Sample ID	LEACHATE				
Depth		Please se	e attached n	otes for all	
COC No / misc		abbreviations and acronyms			
Containers	V H HNUF N P G				
Sample Date	26/10/2022				
Sample Type	Leachate				
Batch Number	1				
Date of Receipt	27/10/2022	LOD/LOR	Units	Method No.	
Dissolved Arsenic		<2.5		TM30/PM14	
Dissolved Arsenic [#]	381.4 _{AA}	<2.5	ug/l	TM30/PM14	
	-	<2.5 <12	ug/l		
Dissolved Boron	8435 _{AA}		ug/l	TM30/PM14	
Dissolved Cadmium	<1.0 _{AA}	<0.5	ug/l	TM30/PM14	
Dissolved Cadmium [#]	-	<0.5	ug/l	TM30/PM14	
Dissolved Calcium	186.3 _{AA}	<0.2 <0.2	mg/l	TM30/PM14	
Dissolved Calcium [#]	-	-	mg/l	TM30/PM14	
Total Dissolved Chromium	296.0 _{AA}	<1.5	ug/l	TM30/PM14	
Total Dissolved Chromium [#]	-	<1.5	ug/l	TM30/PM14	
Dissolved Copper	<14 aa	<7	ug/l	TM30/PM14	
Dissolved Copper [#]	-	<7	ug/l	TM30/PM14	
Total Dissolved Iron	854 _{AA}	<20	ug/l	TM30/PM14	
Total Dissolved Iron [#]	-	<20	ug/l	TM30/PM14	
Dissolved Lead	<10 _{AA}	<5	ug/l	TM30/PM14	
Dissolved Lead [#]	-	<5	ug/l	TM30/PM14	
Dissolved Magnesium	130.9 _{AA}	<0.1	mg/l	TM30/PM14	
Dissolved Magnesium [#]	-	<0.1	mg/l	TM30/PM14	
Dissolved Manganese	473 _{AA}	<2	ug/l	TM30/PM14	
Dissolved Manganese #	-	<2	ug/l	TM30/PM14	
Dissolved Mercury	<2 _{AA}	<1	ug/l	TM30/PM14	
Dissolved Mercury [#]	-	<1	ug/l	TM30/PM14	
Dissolved Nickel	214 _{AA}	<2	ug/l	TM30/PM14	

Please include all sections of this report if it is reproduced

All solid results are expressed on a dry weight basis unless stated otherwise.

Dissolved Nickel [#]	-	<2	ug/l	TM30/PM14
Dissolved Potassium	887.5 _{AC}	<0.1	mg/l	TM30/PM14
Dissolved Potassium #	-	<0.1	mg/l	TM30/PM14
Dissolved Sodium	2033.6 _{AC}	<0.1	mg/l	TM30/PM14
Dissolved Sodium [#]	-	<0.1	mg/l	TM30/PM14
Dissolved Zinc	212 _{AA}	<3	ug/l	TM30/PM14
Dissolved Zinc [#]	-	<3	ug/l	TM30/PM14
Total Phosphorus	17432 _{AB}	<5	ug/l	TM30/PM14
EPH (C8-C40) [#]	-	<10	ug/l	TM5/PM30
Fluoride	0.8	<0.3	mg/l	TM173/PM0
Sulphate as SO4	416.3	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	-	<0.5	mg/l	TM38/PM0
Chloride	2792.4	<0.3	mg/l	TM38/PM0
Chloride [#]	-	<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	-	<0.2	mg/l	TM38/PM0
Ortho Phosphate as PO4	31.97	<0.06	mg/l	TM38/PM0
Ortho Phosphate as PO4 #	-	<0.06	mg/l	TM38/PM0
Total Oxidised Nitrogen as N	<0.2	<0.2	mg/l	TM38/PM0

Marron Environmental
J154
Drehid
Donal Marron
22/17700

EMT Sample No.	123-129				
Sample ID	LEACHATE				
Depth			e attached no		
COC No / misc		abbrevi	ations and ac	cronyms	
Containers	V H HNUF N P G				
Sample Date	26/10/2022				
Sample Type	Leachate				
Batch Number	1			Method	
Date of Receipt	27/10/2022	LOD/LOR	Units	No.	
Total Cyanide	0.08	<0.01	mg/l	TM89/PM0	
Ammoniacal Nitrogen as N	1553.36 _{AC}	<0.03	mg/l	TM38/PM0	
Ammoniacal Nitrogen as N [#]	-	<0.03	mg/l	TM38/PM0	
COD (Settled)	5140 _{AC}	<7	mg/l	TM57/PM0	
COD (Settled) #	-	<7	mg/l	TM57/PM0	
Electrical Conductivity @25C	21822	<2	uS/cm	TM76/PM0	
Electrical Conductivity @25C #	-	<2	uS/cm	TM76/PM0	
рН	8.00	<0.01	pH units	TM73/PM0	
рН#	-	<0.01	pH units	TM73/PM0	
Total Suspended Solids #	-	<10	mg/l	TM37/PM0	

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

Image: set of the			
Image: set of the			
Image: state s			
Image: state s			
Image: set of the			
Image: set of the			
Image: state s			
Image: set of the			
Image: state of the state of			
Image: state s			
Image: set of the			
Image: state of the state of			
Image: state s			
Image: set of the			
Image: state of the state of			
Image: select			
Image: set of the			
Image: select			
Image: select			
Image: state s			
Image: select			
Image: select			
Image: select			
Image: select			
Image: Sector			
Image: Sector			
Image: Constraint of the second se			
Image: Sector			
Image: select			
Image: select			
Image: Sector			

Client Name:	Marron Environmental			
Reference:	J154			
Location:	Drehid			
Contact:	Donal Mar	ron		
EMT Job No:	22/17700			
EMT Sample No.	123-129			
Sample ID	LEACHATE			
Depth		Please se	e attached n	otes for all
COC No / misc		abbrevi	ations and a	cronyms
Containers	V H HNUF N P G			
Sample Date	26/10/2022			
Sample Type	Leachate			
Batch Number	1	LOD/LOR	Units	Method
Date of Receipt	27/10/2022	200,201	Onito	No.
SVOC MS				
Phenols				
2-Chlorophenol	<1	<1	ug/l	TM16/PM30
2-Chlorophenol #	-	<1	ug/l	TM16/PM30
2-Methylphenol	11.5	<0.5	ug/l	TM16/PM30
2-Methylphenol #	-	<0.5	ug/l	TM16/PM30
2-Nitrophenol	<0.5	<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol	<0.5	<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol [#]	-	<0.5	ug/l	TM16/PM30
2,4-Dimethylphenol	<1	<1	ug/l	TM16/PM30
2,4,5-Trichlorophenol	<0.5	<0.5	ug/l	TM16/PM30
2,4,5-Trichlorophenol [#]	-	<0.5	ug/l	TM16/PM30
2,4,6-Trichlorophenol	<1	<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol	<0.5	<0.5	ug/l	TM16/PM30
4-Chloro-3-methylphenol #	-	<0.5	ug/l	TM16/PM30
4-Methylphenol	7	<1	ug/l	TM16/PM30
4-Nitrophenol	<10	<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	ug/l	TM16/PM30
Phenol PAHs	7	<1	ug/l	TM16/PM30
	-1	-1		
2-Chloronaphthalene	<1	<1 <1	ug/l	TM16/PM30 TM16/PM30
2-Chloronaphthalene [#] 2-Methylnaphthalene	- <1	<1 <1	ug/l	TM16/PM30 TM16/PM30
2-Methylnaphthalene [#]	<1	<1	ug/l	TM16/PM30 TM16/PM30
2-Methylnaphthalene	- 2	<1	ug/l ug/l	TM16/PM30
Naphthalene [#]	2	<1	ug/l	TM16/PM30
Acenaphthylene	- <0.5	<0.5	ug/l	TM16/PM30
Acenaphthylene #		<0.5	ug/l	TM16/PM30
Acenaphthene	- <1	<0.5	ug/l	TM16/PM30
Acenaphthene #	-	<1	ug/l	TM16/PM30
Fluorene	<0.5	<0.5	ug/l	TM16/PM30
Fluorene [#]	-	<0.5	ug/l	TM16/PM30
Phenanthrene	<0.5	<0.5	ug/l	TM16/PM30
- Hondhanone	<u> </u>	~0.0	uy/I	110/110/0

Phenanthrene [#]	-	<0.5	ug/l	TM16/PM30
Anthracene	<0.5	<0.5	ug/l	TM16/PM30
Anthracene [#]	-	<0.5	ug/l	TM16/PM30
Fluoranthene	<0.5	<0.5	ug/l	TM16/PM30
Fluoranthene [#]	-	<0.5	ug/l	TM16/PM30
Pyrene	<0.5	<0.5	ug/l	TM16/PM30
Pyrene [#]	-	<0.5	ug/l	TM16/PM30
Benzo(a)anthracene	<0.5	<0.5	ug/l	TM16/PM30
Benzo(a)anthracene #	-	<0.5	ug/l	TM16/PM30
Chrysene	<0.5	<0.5	ug/l	TM16/PM30
Chrysene [#]	-	<0.5	ug/l	TM16/PM30
Benzo(bk)fluoranthene	<1	<1	ug/l	TM16/PM30
Benzo(bk)fluoranthene #	-	<1	ug/l	TM16/PM30
Benzo(a)pyrene	<1	<1	ug/l	TM16/PM30
Indeno(123cd)pyrene	<1	<1	ug/l	TM16/PM30
Dibenzo(ah)anthracene	<0.5	<0.5	ug/l	TM16/PM30
Dibenzo(ah)anthracene #	-	<0.5	ug/l	TM16/PM30
Benzo(ghi)perylene	<0.5	<0.5	ug/l	TM16/PM30
Benzo(ghi)perylene [#]	-	<0.5	ug/l	TM16/PM30
Phthalates				
Bis(2-ethylhexyl) phthalate	<5	<5	ug/l	TM16/PM30
Butylbenzyl phthalate	<1	<1	ug/l	TM16/PM30
Di-n-butyl phthalate	<1.5	<1.5	ug/l	TM16/PM30
Di-n-butyl phthalate #	-	<1.5	ug/l	TM16/PM30
Di-n-Octyl phthalate	<1	<1	ug/l	TM16/PM30
Diethyl phthalate	<1	<1	ug/l	TM16/PM30
Diethyl phthalate #	-	<1	ug/l	TM16/PM30
Dimethyl phthalate	<1	<1	ug/l	TM16/PM30

Client Name:	Marron En	vironment	al	
Reference:	J154			
Location:	Drehid			
Contact:	Donal Mar	ron		
EMT Job No:	22/17700			
EMT Sample No.	123-129			
Ewit Sample No.	123-129			
Sample ID	LEACHATE			
Depth			e attached n	
COC No / misc		abbrevi	ations and a	cronyms
Containers	V H HNUF N P G	1		
Sample Date	26/10/2022			
Sample Type	Leachate			
Batch Number	1	LOD/LOR	Units	Method
Date of Receipt	27/10/2022		2	No.
SVOC MS				
Other SVOCs				
1,2-Dichlorobenzene	<1	<1	ug/l	TM16/PM30
1,2-Dichlorobenzene [#]	-	<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene	<1	<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene [#]	-	<1	ug/l	TM16/PM30
1,3-Dichlorobenzene	<1	<1	ug/l	TM16/PM30
1,3-Dichlorobenzene [#]	-	<1	ug/l	TM16/PM30
1,4-Dichlorobenzene	<1	<1	ug/l	TM16/PM30
1,4-Dichlorobenzene [#]	-	<1	ug/l	TM16/PM30
2-Nitroaniline	<1	<1	ug/l	TM16/PM30
2,4-Dinitrotoluene	<0.5	<0.5	ug/l	TM16/PM30
2,4-Dinitrotoluene [#]	-	<0.5	ug/l	TM16/PM30
2,6-Dinitrotoluene	<1	<1	ug/l	TM16/PM30
3-Nitroaniline	<1	<1	ug/l	TM16/PM30
4-Bromophenylphenylether	<1	<1	ug/l	TM16/PM30
4-Bromophenylphenylether #	-	<1	ug/l	TM16/PM30
4-Chloroaniline	<1	<1	ug/l	TM16/PM30
4-Chlorophenylphenylether	<1	<1	ug/l	TM16/PM30
4-Chlorophenylphenylether #	-	<1	ug/l	TM16/PM30
4-Nitroaniline	<0.5	<0.5	ug/l	TM16/PM30
Azobenzene	<0.5	<0.5	ug/l	TM16/PM30
Azobenzene [#]	-	<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane	<0.5	<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane #	-	<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether	<1	<1	ug/l	TM16/PM30
Bis(2-chloroethyl)ether [#]	-	<1	ug/l	TM16/PM30
Carbazole	<0.5	<0.5	ug/l	TM16/PM30
Carbazole [#]	-	<0.5	ug/l	TM16/PM30
Dibenzofuran	<0.5	<0.5	ug/l	TM16/PM30
Dibenzofuran [#]	-	<0.5	ug/l	TM16/PM30
Hexachlorobenzene	<1	<1	ug/l	TM16/PM30
Hexachlorobenzene [#]	-	<1	ug/l	TM16/PM30

QF-PM 3.1.3 v11

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

Hexachlorobutadiene	<1	<1	ug/l	TM16/PM30
Hexachlorobutadiene#	-	<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene	<1	<1	ug/l	TM16/PM30
Hexachloroethane	<1	<1	ug/l	TM16/PM30
Hexachloroethane#	-	<1	ug/l	TM16/PM30
Isophorone	<0.5	<0.5	ug/l	TM16/PM30
Isophorone [#]	-	<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine	<0.5	<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine #	-	<0.5	ug/l	TM16/PM30
Nitrobenzene	<1	<1	ug/l	TM16/PM30
Nitrobenzene [#]	-	<1	ug/l	TM16/PM30
Surrogate Recovery 2-Fluorobiphenyl	94	<0	%	TM16/PM30
Surrogate Recovery p-Terphenyl-d14	97	<0	%	TM16/PM30

Client Name:	Marron Environmental			
Reference:	J154			
Location:	Drehid			
Contact:	Donal Mar	ron		
EMT Job No:	22/17700			
EMT Sample No.	123-129			
Sample ID	LEACHATE			
Depth		Please se	e attached n	otes for all
COC No / misc		abbrevi	ations and a	cronyms
Containers	V H HNUF N P G			
Sample Date	26/10/2022			
Sample Type	Leachate			
Batch Number	1	LOD/LOR	Units	Method
Date of Receipt	27/10/2022	LODIEON	01110	No.
VOC MS				
Dichlorodifluoromethane	<2	<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether	1.4	<0.1	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether #	-	<0.1	ug/l	TM15/PM10
Chloromethane	<3	<3	ug/l	TM15/PM10
Chloromethane #	-	<3	ug/l	TM15/PM10
Vinyl Chloride	<0.1	<0.1	ug/l	TM15/PM10
Vinyl Chloride #	-	<0.1	ug/l	TM15/PM10
Bromomethane	<1	<1	ug/l	TM15/PM10
Chloroethane	<3	<3	ug/l	TM15/PM10
Chloroethane #	-	<3	ug/l	TM15/PM10
Trichlorofluoromethane	<3	<3	ug/l	TM15/PM10
Trichlorofluoromethane #	-	<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE)	<3	<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE) [#]	-	<3	ug/l	TM15/PM10
Dichloromethane (DCM)	<3	<3	ug/l	TM15/PM10
Dichloromethane (DCM) #	-	<3	ug/l	TM15/PM10
trans-1-2-Dichloroethene	<3	<3	ug/l	TM15/PM10
trans-1-2-Dichloroethene #	-	<3	ug/l	TM15/PM10
1,1-Dichloroethane	<3	<3	ug/l	TM15/PM10
1,1-Dichloroethane #	-	<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene	<3	<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene #	-	<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	ug/l	TM15/PM10
Bromochloromethane	<2	<2	ug/l	TM15/PM10
Bromochloromethane #	-	<2	ug/l	TM15/PM10
Chloroform	<2	<2	ug/l	TM15/PM10
Chloroform [#]	-	<2	ug/l	TM15/PM10
1,1,1-Trichloroethane	<2	<2	ug/l	TM15/PM10
1,1,1-Trichloroethane #	-	<2	ug/l	TM15/PM10
1,1-Dichloropropene	<3	<3	ug/l	TM15/PM10
1,1-Dichloropropene #	-	<3	ug/l	TM15/PM10
Carbon tetrachloride	<2	<2	ug/l	TM15/PM10

QF-PM 3.1.4 v11

Carbon tetrachloride #	-	<2	ug/l	TM15/PM10
1,2-Dichloroethane	5	<2	ug/l	TM15/PM10
1,2-Dichloroethane #	-	<2	ug/l	TM15/PM10
Benzene	4.4	<0.5	ug/l	TM15/PM10
Benzene [#]	-	<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)	<3	<3	ug/l	TM15/PM10
Trichloroethene (TCE) #	-	<3	ug/l	TM15/PM10
1,2-Dichloropropane	<2	<2	ug/l	TM15/PM10
1,2-Dichloropropane #	-	<2	ug/l	TM15/PM10
Dibromomethane	<3	<3	ug/l	TM15/PM10
Dibromomethane [#]	-	<3	ug/l	TM15/PM10
Bromodichloromethane	<2	<2	ug/l	TM15/PM10
Bromodichloromethane #	-	<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	ug/l	TM15/PM10
Toluene	25	<5	ug/l	TM15/PM10
Toluene [#]	-	<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	ug/l	TM15/PM10
1,1,2-Trichloroethane	<2	<2	ug/l	TM15/PM10
1,1,2-Trichloroethane #	-	<2	ug/l	TM15/PM10
Tetrachloroethene (PCE)	<3	<3	ug/l	TM15/PM10
Tetrachloroethene (PCE) #	-	<3	ug/l	TM15/PM10
1,3-Dichloropropane	<2	<2	ug/l	TM15/PM10
1,3-Dichloropropane #	-	<2	ug/l	TM15/PM10
Dibromochloromethane	<2	<2	ug/l	TM15/PM10
Dibromochloromethane #	-	<2	ug/l	TM15/PM10
1,2-Dibromoethane	<2	<2	ug/l	TM15/PM10
1,2-Dibromoethane #	-	<2	ug/l	TM15/PM10
Chlorobenzene	<2	<2	ug/l	TM15/PM10
Chlorobenzene [#]	-	<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane	<2	<2	ug/l	TM15/PM10

Client Name: Reference: Location: Contact: EMT Job No: EMT Sample No. Sample ID Depth COC No / misc Containers Sample Date Sample Type Batch Number	Marron Er J154 Drehid Donal Mar 22/17700 123-129 LEACHATE VH HNUF N P G 26/10/2022 Leachate 1	Please se	al e attached n ations and a	
Date of Receipt	1 27/10/2022	LOD/LOR	Units	Nethod No.
VOC MS Continued				
1,1,1,2-Tetrachloroethane #	-	<2	ug/l	TM15/PM10
Ethylbenzene	11	<1	ug/l	TM15/PM10
Ethylbenzene [#]	-	<1	ug/l	TM15/PM10
m/p-Xylene	20	<2	ug/l	TM15/PM10
m/p-Xylene [#]	-	<2	ug/l	TM15/PM10
o-Xylene	11	<1	ug/l	TM15/PM10
o-Xylene [#]	-	<1	ug/l	TM15/PM10
Styrene	<2	<2	ug/l	TM15/PM10
Bromoform	<2	<2	ug/l	TM15/PM10
Bromoform [#]	-	<2	ug/l	TM15/PM10
Isopropylbenzene	<3	<3	ug/l	TM15/PM10
Isopropylbenzene #	-	<3	ug/l	TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	ug/l	TM15/PM10
Bromobenzene	<2	<2	ug/l	TM15/PM10
Bromobenzene [#]	-	<2	ug/l	TM15/PM10
1,2,3-Trichloropropane	<3	<3	ug/l	TM15/PM10
1,2,3-Trichloropropane #	-	<3	ug/l	TM15/PM10
Propylbenzene	<3	<3	ug/l	TM15/PM10
Propylbenzene [#]	-	<3	ug/l	TM15/PM10
2-Chlorotoluene	<3	<3	ug/l	TM15/PM10
2-Chlorotoluene [#]	-	<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene [#]	<3	<3 <3	ug/l	TM15/PM10 TM15/PM10
4-Chlorotoluene	- <3		ug/l	TM15/PM10 TM15/PM10
	<3	<3	ug/l	TM15/PM10 TM15/PM10
4-Chlorotoluene [#] tert-Butylbenzene	<3	<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
tert-Butylbenzene	<0	<3 <3	ug/i ug/i	TM15/PM10 TM15/PM10
1,2,4-Trimethylbenzene	- 5	<3	ug/l	TM15/PM10 TM15/PM10
1,2,4-Trimethylbenzene [#]	-	<3	ug/l	TM15/PM10
sec-Butylbenzene	<3	<3	ug/l	TM15/PM10
sec-Butylbenzene [#]	-	<3	ug/l	TM15/PM10
4-Isopropyltoluene	- 14	<3	ug/l	TM15/PM10
	14	N	uyn	

QF-PM 3.1.4 v11

4-Isopropyltoluene #	-	<3	ug/l	TM15/PM10
1,3-Dichlorobenzene	<3	<3	ug/l	TM15/PM10
1,3-Dichlorobenzene#	-	<3	ug/l	TM15/PM10
1,4-Dichlorobenzene	<3	<3	ug/l	TM15/PM10
1,4-Dichlorobenzene#	-	<3	ug/l	TM15/PM10
n-Butylbenzene	<3	<3	ug/l	TM15/PM10
n-Butylbenzene [#]	-	<3	ug/l	TM15/PM10
1,2-Dichlorobenzene	<3	<3	ug/l	TM15/PM10
1,2-Dichlorobenzene#	-	<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3	<3	ug/l	TM15/PM10
Naphthalene	2	<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	102	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	103	<0	%	TM15/PM10

Client Name:Marron EnvironmentalReference:J154

Location: Drehid

Contact: Donal Marron

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Notification of Deviating Samples

Matrix : Liquid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/17700

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range
AA	x2 Dilution
AB	x5 Dilution
AC	x20 Dilution
L	

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 22/17700

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			
TM37	Moduled Themods - 155: OSEFA ToU.2 (1965), EN672.2005 and AFFA SMEWW 2540D:1999 22nd Edition; VSS: USEPA 1684 (Jan 2001), USEPA 160.4 (1971) and SMEWW 2540E:1999 22nd Edition. Gravimetric determination of Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and E50°C for VSS.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes			

EMT Job No: 22/17700

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM57	Modified US EPA Method 410.4. (Rev. 2.0 1993) Comparable with ISO 15705:2002. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. (Rev. 2.0 1993) Comparable with ISO 15705:2002. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1 (1982). Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.				
TM76	Modified US EPA method 120.1 (1982). Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.				

ENVIRONMENTAL CHEMISTRY TEST CERTIFICATE

Report Status: Date of Issue: Report Number: Project: Page 1 of 2

Final Report 09-Nov-2022 1497740 1-221026-15100

Client: Primary Contact: Address:		Waste Management Waste Management			С	order Number:	3082510
Sample Number: INAB P9 Classifica Sample Descriptior	tion:	3543006 Trade wastes SW4	Date Received:	26/10/2022	Da	te Tested:	27/10/2022
Test BOD with ATU			Result 1	Unit(s) mg/L O2	Method ECTM004	Technique HACH (LDC	®)
Sample Number: INAB P9 Classificat Sample Description	tion:	3543007 Trade wastes SW5	Date Received:	26/10/2022	Da	te Tested:	27/10/2022
Test BOD with ATU			Result 2	Unit(s) mg/L O2	Method ECTM004	Technique HACH (LDC	®)
Sample Number: INAB P9 Classificat Sample Descriptior	tion:	3543008 Trade wastes SW6	Date Received:	26/10/2022	Da	te Tested:	27/10/2022
Test BOD with ATU			Result 2	Unit(s) mg/L O2	Method ECTM004	Technique HACH (LDC	®)
Sample Number: INAB P9 Classificat Sample Description	tion:	3543009 Trade wastes LEACHATE	Date Received:	26/10/2022	Da	te Tested:	27/10/2022
Test BOD with ATU			Result 163	Unit(s) mg/L O2	Method ECTM004	Technique HACH (LDC	(R)

The results in this report were authorised by:

Bacomski

Chiara Lou Baczynski Laboratory Manager - Environmental & Allergen

Samples tested at: ALT Chemical Testing Laboratory, Unit T, M7 Business Park, Newhall, Naas, Co. Kildare, Ireland.

Tel: +353 (0) 45434355

Web: www.altesting.ie

ENVIRONMENTAL CHEMISTRY TEST CERTIFICATE

 Report Status:
 Final Report

 Date of Issue:
 09-Nov-2022

 Report Number:
 1497740

 Project:
 1-221026-15100

 Page 2 of 2
 1

Order Number:

3082510

Client:

Drihid Waste Management

Disclaimer(s)

Results in this report relate only to the items tested.

Reports may not be reproduced except in full, without the approval of Advanced Laboratory Testing.

Results reported as cfu/cm2 are calculated based on information supplied by the relevant customer regarding the specific area swabbed.

* beside the method or lack of INAB symbol signifies that Advanced Laboratory Testing are not INAB accredited for this method.

Samples are retained post analysis for a period of 10 days.Samples are stored frozen by default except in the case of RSA requirements. Unless otherwise stated as a Test Certificate comment, samples were received in a satisfactory condition.

Sampling including the date and time swabs are taken at source and area swabbed is outside the activities of ALT-MxNS and Scope of INAB Accreditation.

Environmental swab samples should ideally be tested within 4 hours of being taken at source or within a maximum of 24 hours. Swabs which are tested after 24 hours of being taken at source will result in a detrimental effect on results.

If the date and time which swabs are sampled is not referenced when submitting paperwork, ALT-MxNS will not be able to determine if swabs have been tested within the allocated 24 hour window nor the effect on results.

The results in this report were authorised by:

Bacomski

Chiara Lou Baczynski Laboratory Manager - Environmental & Allergen

Samples tested at: ALT Chemical Testing Laboratory, Unit T, M7 Business Park, Newhall, Naas, Co. Kildare, Ireland.

